Our algorithms allow ML models to be trained directly on operational data localized to the edge, avoiding cloud dependencies.
02
Embedded Inference
Models are compressed and specialized to efficiently run inferences with low latency on constrained edge hardware environments.
03
Federated Learning
A distributed learning approach allows updating of edge ML models while keeping training data localized for privacy.
03
Edge Software Development
We provide SDKs and tools to simplify developing, deploying, managing and updating ML applications on diverse embedded systems.
Case study 1
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laborisLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
Go to Use Case Title
What Are the Advantages You Should Expect?
Efficiency
Automation reduces human workloads and speeds synchronized fleetwide functions.
Safety
Embedded perception allows split-second reactions important for industrial controls.
Uptime
Edge intelligence maintains critical IOT functionality without cloud reliance.
Mobility
Embedded ML powers portable intelligent devices with minimal connectivity.